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Generating functions for connected embeddings in a lattice: 111. 
Bond percolation 

M F Sykes 
Wheatstone Physics Laboratory, King’s College, University of London, Strand, London 
WC2R 2LS, UK 

Received 25 September 1985 

Abstract. The method of partial generating functions is developed to obtain bond perimeter 
polynomials for percolation processes. Four new polynomials, D,-D,,, are given for the 
body-centred cubic lattice. 

1. Introduction 

In this paper we examine the application of the techniques described in two previous 
papers, Sykes (1986a, b, hereafter referred to as I and I1 respectively), to the bond 
percolation problem. Specifically we shall describe the necessary modifications that 
enable the method to be used for the derivation of perimeter polynomials. Data for 
these polynomials for the more usual crystal lattices are given by Sykes et al (1981); 
the data were obtained by machine enumeration. As we have already stressed in I 
and I1 such enumerations are very demanding of computer time. 

2. The bond perimeter of a weak embedding 

We first recall the essential concepts and definitions by an example: consider the free 
graph with four bonds, G, of figure l (a )  and a weak embedding, figure l (b) ,  thereof 
in the plane triangular lattice. (In general the lattice, L, in which G is embedded could 
just as well be a finite graph.) The embedding illustrated has a bond perimeter of 15. 

I I 

I I 
lo1 i bl I C )  

Figure 1. ( a )  Free graph G; ( b )  a weak embedding of G in a triangular lattice; ( c )  
associated section graph. 
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To obtain the fourth-order perimeter polynomial we have essentially to summarise the 
average environmental situation for all connected graphs with four bonds that can be 
embedded in the lattice (if the bond probability is p and q = 1 - p ,  each embedding 
of four bonds with a bond perimeter of U will contribute a term p4qU to D4( 9)); notice 
however that the concepts of weak embedding and bond perimeter apply equally well 
to graphs with more than one component. Any weak embedding of G in a lattice (or 
finite graph) L defines another graph: the associated section graph of the embedding. 
(In our example the associated section graph is the graph (c) of figure 1 .  For definitions 
of this and other theoretical terms see Essam and Fisher (1970) . )  

In I1 the method of partial generating functions was developed to provide the 
number of connected weak embeddings (or subgraphs) of b bonds together with 
information on their site content. Now the site content is a property of the free graph 
while the bond perimeter is a property of the embedding. However, provided the total 
valency of every site of L is known (which is a trivial requirement for an infinite crystal 
lattice), the bond perimeter of any embedding will be determined if we also know the 
number of bonds in the associated section graph. 

Suppose the free graph has S sites and b bonds; suppose the associated section 
graph of some embedding has B bonds and further that the lattice has coordination 
number 2. Then from each site of the associated section graph of the embedding there 
radiate 2 lattice bonds and these will all be perimeter bonds of the section graph 
unless a pair of sites are neighbours; the number of perimeter bonds of the section 
graph is thus just (SZ - 2 B ) .  The weak embeddings will have an augmented perimeter 
of ( S Z  - 2 B )  + B - b. We define the quantity 

A = B - b  

as the bond deficit of the embedding. The bond perimeter can now be written 

SZ - 2b - A .  (2 .2 )  
Expression (2 .2 )  relates the perimeter of each embedding of a free graph to the 

number of sites and bonds in the free graph and the bond deficit; furthermore, the 
deficit bonds, B - b in number, all lie in the associated section graph. As we show in 
§ 3, the above considerations make it possible to modify the method of partial generating 
functions to provide the necessary extra information. The essential point is that all 
the above results hold even if G is not connected. 

3. Subgraph enumerators with explicit bond deficit parameter 

In 11, § 3 we have described how an unrestricted subgraph enumerator can be written 
down as a continued product of certain auxiliary generating polynomials; the product 
is taken over all the vertex stars that correspond to B sites having at least one A site 
as neighbour. Each vertex star can be considered in isolation. To take a specific 
example, three A sites and a B site contribute a factor 

( 1  +3by+3b2y+ b3y) (3.1) 
which is no more than the general polynomial given in I1 evaluated for a 3-vertex star. 
Since the enumerator is unrestricted the embeddings generated are not necessarily 
connected; in fact the term 3by above corresponds simply to the three ways of 
embedding a bond in the vertex star. 
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Now in writing down (3.1) we have simply recorded the number of bonds for each 
embedding chosen; but we notice that all the other bonds in the vertex star must 
necessarily be deficit bonds. It therefore suffices to write in place of (3.1) 

( 1  + 317A’y + 3b’Ay + b 3 y )  (3.2) 

and the number of deficit bonds generated (i.e. the contribution to A) will be recorded 
by the power of A,  The appropriate auxiliary polynomial for an r-vertex star is thus 
seen to be 

(1 + [ ( A  + b)‘ - A  ‘]U}. (3 .3)  

The substitution required for the auxiliary polynomials that arise in partitioned enumer- 
ations is now simply obtained by replacing the expression 

[ ( 1 + by)  cl - 11 (3.4) 

o f  (4.1) o f  I1 by 

[ ( A  + by)  cl - A c 8 ] .  ( 3 . 5 )  

Thus taking as example the graph 

which we have used in I and I1 we can immediately write down the complete set of 
unrestricted subgraph enumerators: 

G ( IJK ) = ( 1 + 2A by + b’y ) ( 1 + 3 A ’by + 3 A b’y + b 3 y )  

G( I, JK ) = ( 1 + 2 A  by)3( 1 + 3 A ’by + A b 2 y )  

G(J,  I K )  = ( 1  +2Aby)( 1 +2Aby+ b’y)’( 1 + 3A2by + Ab’y) (3.6) 

G( K, I J )  = ( 1 + 2A by)2( 1 + 2A by + b’y ) ( 1 + 3 A  ’by + A b’y ) 

G ( I, J,  K ) = ( 1 + 2A ( 1 + 3 A ’ by)  

from which we deduce 

G*( ZJK) = b3y + [(2 + 12A) b4+ 3 b 5 ] y 2  + [ (4A + 42A’) b5 + ( 1  + 20A) b6 + 3 b7]y3 

+ (44h3 b6 + 31A’b’ + 9Ab8 + b9)y4 (3.7) 

which can be verified by inspection (although the task is now of some complexity). 
The result (3.7) summarises all the connected subgraphs of G with information on 

their site content, bond content and bond deficit; the primary sites are assumed to be 
always occupied. 
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4. Applications 

The results of the previous section can be applied to the body-centred cubic lattice by 
simply repeating the formal processes of I1 and using the same basic conjgurational 
data; it is only necessary to retain the extra parameter, A, throughout the calculation. 
In this way we obtain four new perimeter polynomials D9(q)-D12(q)  which we give 
in the appendix. The detailed information provided by the partial generating functions 
enables us to obtain also a more general perimeter polynomial Ds,b(q) which sum- 
marises the average environmental situation of all subgraphs with s sites and b bonds. 
These perimeter polynomials, which are too extensive to be quoted here, have two 
important applications. First, by developing the general theory of balance tables (which 
we shall describe subsequently (Sykes and Wilkinson 1986a)) it is possible to complete 
the polynomials BI3(x)  and B,~(x )  quoted in 11; second, they greatly facilitate the 
derivation of series expansions for the mean size of bond clusters when measured by 
site content. We shall report this second application for the simple cubic and body- 
centred cubic lattices subsequently (Sykes and Wilkinson 1986b); there it will be shown 
that the data for perimeter polynomials are usefully supplemented by a knowledge of 
the expansion of the mean number, K ( p ) ,  of clusters at low densities. We have 
therefore derived these expansions using the cluster method of Essam and Sykes (1966) 
and find 
K,,= 1 -3p+3p4+22p6- 18p7+ 1 8 3 ~ ~ - 3 2 " ~ + 2 0 3 4 ~ ' ~ - 5 1 4 2 ~ ' '  

+26 539pI2-81 183pI3+381 2 2 2 ~ ' ~ .  . . 

+ 1315 0 3 4 ~ ' ~  - 5930 3 9 2 ~ ' ~  + 37 681 0 3 2 ~ ' ~ .  . . 

(4.1) 

(4.2) 
The number of star graphs that contribute to the final coefficient in (4.2) is 340 of 

which 147 have cyclomatic index 5 or more. The listing of these star graphs and the 
determination of the number of their weak embeddings is a task of some complexity; 
it is therefore desirable to find some independent means of checking the derivation; 
we shall go some way to providing this in the next paper. 

Kbcc = 1 - 4p + 12p4+ 136p6 - 192p7 + 2 3 0 7 ~ '  - 6348p9 + 50 944p" - 192 480p" 

5. Conclusions 

We have shown that the derivation of perimeter polynomials can be made to depend 
on the determination, for each embedding, of one parameter: the bond deficit. Because 
this dependency applies both to connected and disconnected graphs the whole of the 
formal procedure described in I and I1 can be used to generate perimeter polynomials 
of connected graphs only. As a byproduct we have obtained at the same time 
information on the site content of all the subgraphs. 

Appendix. Bond perimeter polynomials for the body-centred cubic lattice (for earlier 
terms see Sykes et 01 (1981)) 

D9 = 70 545 284q6*+ 139 356 264q6'+ 154 046 76Oq6O+ 121 832 944qj9 
+ 78 940 68Oqs8 + 41 397 648qS7 + 18 049 70Oqs6 + 5309 952qS5 
+4131 64Oqj4+6144 216qj3+6O11 064q5*+4253 616q" 
+2145 912qjo+747 768q49+68 376q48+72 096q4 

+ 110 360q4'+90 144qU+37 512q43+2588q42+704q38+720q37 
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D,, = 638 589 820q68+ 1438 759 872q67+ 1810 272 744q66+ 1637 483 9O4cf5 

+ 1220 529 240q64+758 618 64Ocf3+407 983 040q62+ 176 859 312q6' 

+92 582 784q60+85 552664q59+86639664q58+73 216992q57 

+47 253 480q56+24 364 644q55+8251 344q54+ 1390 704q53 

+ 898 692qS2+ 1734 808q5'+ 1821 672qS0+ 1206 288q49+ 515 284q4' 

+55 512q47+ 12 844qU+20 664q43+ 12 564q42+ l120q41+72q36 

D,, = 5847 741 388q74+ 14 797 602 912q73+20 839 131 300q72+21 115 886 1289" 

+ 17 597 289 O60q7O+ 12 444 614 544q69+7723 757 976q6' 

+4128 654 192q67+2209 169 832cf6+ 1528 628 832cf5+ 1309 205 652q64 

+ 1145 162 592q63 + 864 426 480q62 + 549 560 904q6' + 274 192 416q6' 

+ 101 453 280qs9+32 437 224q5'+25 257 960q57+30 788 352q56 

+26 139 360qs5+ 16 597 248q54+6634608q53+1280688q52 

+ 195 120qSo+406 056q49+396 168q4*+220 832q47+29 2 8 0 ~ 7 ~ ~  

+ 20 16q4' + 2376q41 + 3 1 2q40 

D12 = 54 073 952 472q8'+ 151 836 363 792q79+236 264 310 264q78 

+264 433 527 616q77+242 265 305 232q76+ 189 919 078 224q75 

+ 131 635 620 752q74+ 80 760 938 880q73+47 285 290 554q72 

+30 227 447 316q7'+22 541 800 296q70+ 18 328 034 200cf9 

+ 14 480 868 684cf8+ 10 407 987 40&f7+ 6392 920 728cf6 

+ 3236 660 160q65+ 1395 723 836cf4+ 642 799 844q63 

+501455 592q62+471 239 104q6'+369 622 912q6' 

+218 193 936q59+92 778 288q5'+22 361 744q57+3586 806q56 

+6681 144q55+8392 632q54+6997 780q53+3433 236q5'+782 304q5' 

+38 370q48+73 344q47+60012q46+ 16 488q45+ 198q40+52q39. 
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